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Abstract

A general approach to the solution of some static and dynamic problems for hollow anisotropic cylinders with

noncircular cross-section within the framework of the three-dimensional linear elasticity theory is proposed. The ap-

proach is based on a steady numerical method and is realized in a program complex. The stress–strain state and certain

types of dynamic characteristics of hollow anisotropic cylinders with noncircular cross-section are studied with their

geometric and mechanic parameters being varied over a wide range. The effect of the cylinder cross-section shape on the

character of mechanical behaviour is examined.
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1. Introduction

Noncircular hollow cylinders, as structural elements, are widely used in constructing the high strength

and reliable structures, acted upon by nonuniform loads, in such fields as engineering and mining industries

as well as in other branches of the modern technique. To ensure the strength and reliability of the structures

it is necessary to know the stress–strain state and dynamical characteristics of the structural elements
making these structures.

There exists an abundant literature on the solution of the problems on the stress–strain state, stability,

and vibrations of thin-walled noncircular cylindrical bodies. These problems usually are solved within the

framework of the classical and various refined theories of shells (Cheung et al., 1991; Mc Daniel and Logan,

1971; Meyers and Hyer, 1977; Noor, 1973; Noor and Burton, 1992; Soldatos, 1985, 1986). However, in

many cases the geometrical sizes of structural elements and pronounced anisotropy of a material make it

necessary to use the three-dimensional theory of elasticity.

The solution of problems concerning the statics and dynamics of thick-walled elements as spatial
problems of elasticity theory, is faced with significant difficulties attributed to complexity of the initial
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system of partial differential equations and to necessity to satisfy the boundary conditions on the surfaces

bounding the given elastic body. These difficulties rise substantially upon the calculation of such structural

elements as cylinders of complex shape made of anisotropic and inhomogeneous materials. For this reason

there is only a sparse number of studies on the subject (Guz, 1986; Soldatos, 1999).
Therefore, of great importance is the development of efficient approaches to the solution of stress–strain

problems and to the determination of dynamic characteristics of hollow cylinders in the three-dimensional

statement, which allow us, using modern personal computers, to solve exactly the problems mentioned with

the geometric and mechanical parameters being varied over a wide range.

Recently, the development of computational technique has made it possible to solve a large number of

problems of the elasticity theory by using the approximate methods such as the method of straight lines,

method of integral relations, finite-difference method, and method of finite elements that are based on

discretization of the exact equations of the spatial elasticity theory. The study of the initial problem,
employing these methods, has been reduced to the solution of the system of ordinary differential equations

or of the system of algebraic equations. Apart from the finite element method, which is widely used today in

solving the spatial problems of the elasticity theory (Tahbildar and Gladwell, 1972), the other approaches

are applied (Hutchinson and El-Arhari, 1986; Grigorenko et al., 2000).

In the present work, the authors propose a general efficient numerical–analytical approach for investi-

gation of the stress–strain state and some dynamical characteristics of anisotropic hollow thick-walled

cylinders with a noncircular cross-section under specified boundary conditions at their bounding surfaces

and ends. The approach is based on the reduction of the initial equations of spatial elasticity theory to
systems of ordinary differential equations for boundary-value problems and for problems on eigenvalues.

All the parameters, characterizing a stress–strain state and external loads (for static problems), are ex-

panded into the Fourier series in a longitudinal coordinate. For dynamic problems, the solutions are

represented as a traveling wave. In both cases, the difference approximation across the cylinder thickness is

used. One-dimensional problems are solved using the exact stable numerical method of discrete orthogo-

nalization (Bellman and Kalaba, 1965; Grigorenko and Rozhok, 2003), and dynamical problems are

considered within the framework of the same method combined with the procedure of stepwise search. So,

the results obtained are sufficiently high accuracy along the longitudinal and arc coordinates due to use of
continuum-based methods. The discrete finite difference method being distinguished from the finite element

method is used only in one direction along the cylinder thickness (for sufficiently smooth area). In using the

finite element method the solution is discretely approximated along all of three directions. The approach

developed is realized with the help of the computational complex including modern personal computers.

Main positions of the approach are given in the authors� works (Grigorenko and Vlaikov, 1988; Gri-

gorenko, 1997; Vlaikov and Shevchenko, 1988).
2. Simulation: basic equations

In the present work an elastic body in the form of hollow noncircular cylinder has been chosen, as the

subject of consideration. In solving the problem we will use the orthogonal curvilinear coordinate system

a ¼ s, b ¼ t, and c (Fig. 1), where s¼ const., t¼ const. are the lines of principal curvatures on some

coordinate cylindrical surface that represent the families of directrices and generatrices, with the coordinate

c being counted off along the normal to this surface. We will count off the arc coordinate t of the directrix
from the certain fixed generatrix and set the natural parameter s to be equal to the distance from one of the

boundary contours of a coordinate surface (the boundary contours are chosen from the family of directing

curves that is formed by the cross-sections of the coordinate surface of the cylinder). Thus, the position of
some point M in a space is uniquely defined by three parameters ðs; t; cÞ.



Fig. 1. Coordinate system adopted.
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As the coordinate surface of the cylinders under study, we may take any surface that is equidistant to the

surfaces bounding the cylinder. In practical calculations, a middle surface, which is equidistant from lateral

ones, is usually taken as the coordinate surface.

In accepted coordinate system, the squared length of a linear element of the cylinder is
ds2 ¼ H 2
1 ds

2 þ H 2
2 dt

2 þ H 2
3 dc

2; ð1Þ
where H1 ¼ 1, H2 ¼ 1þ c
Rt
, H3 ¼ 1, and Rt is the radius of curvature of the directrix of the middle surface.

Let us refer the plane of the cylinder cross-section to the Cartesian coordinate system x, z. In parametric

form the equations for the directrix of the middle surface can be represented as
x ¼ xðtÞ; z ¼ zðtÞ:
Then the radius of curvature of the directrix is defined as
Rt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _x2 þ _y2Þ3

_x€y � _y€x

s
: ð2Þ
Thus, in order to specify the geometry of a cylinder, it is necessary to set the geometry of its middle

surface and its thickness.

Upon the deformation of a hollow noncircular cylinder referred to the curvilinear orthogonal system s, t,
c, all its points will occupy new positions in a space. Then the full displacement of some point of the

cylinder can be presented by three components
us ¼ usðs; t; cÞ;
ut ¼ utðs; t; cÞ;
uc ¼ ucðs; t; cÞ;

ð3Þ
which are the projections of the full displacement of the point on the directions of tangents to the coor-

dinate lines s, t, c. In what follows, we will call the quantities us, ut, uc as displacements along the generatrix,

directrix, and in the normal direction, respectively. Since the cylinder is considered as a continuous elastic
body, then us, ut, uc must be continuous functions of the variables s, t, c over the whole volume.
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Displacements and strains are connected by the following relations:
es ¼
ous
os

;

et ¼
1

H2

out
ot

þ 1

H2

oH2

oc
uc;

ec ¼
ouc
oc

;

est ¼
1

H2

ous
ot

þ out
os

etc ¼
out
ot

� 1

H2

oH2

oc
ut þ

1

H2

ouc
ot

;

esc ¼
ouc
os

þ ous
oc

;

ð4Þ
where es, et, ec are the linear strains along the directions of the coordinate lines and est, etc, esc are the shear
strains. These relations enable us to determine strains by the known displacements that are held in the body.

The conditions of equilibrium can be represented as
H2

ors

os
þ osst

ot
þ o

oc
ðH2sscÞ þ H2Ps ¼ 0;

ort

ot
þ H2

osst
os

þ 2
oH2

oc
stc þ H2

ostc
oc

þ H2Pt ¼ 0;

o

oc
ðH2rcÞ �

oH2

oc
rt þ H2

ossc
os

þ ostc
ot

þ H2Pc ¼ 0:

ð5Þ
Here, rs, rt, and rc are the normal stresses, sst, stc, and scs are the shear stresses, and Psðs; t; cÞ, Ptðs; t; cÞ, and
Pcðs; t; cÞ are the projections of volume forces on the corresponding directions of tangents to the coordinate

lines.

The equations of motion can be written in the following form:
H2

ors

os
þ osst

ot
þ o

oc
ðH2sscÞ � q

o2us
ot2�

¼ 0;

ort

ot
þ H2

osst
os

þ 2
oH2

oc
stc þ H2

ostc
oc

� q
o2ut
ot2�

¼ 0;

o

oc
ðH2rcÞ �

oH2

oc
rt þ H2

ossc
os

þ ostc
ot

� q
o2uc
ot2�

¼ 0;

ð6Þ
where t� stands for the temporal coordinate.

For an orthotropic material, whose symmetry planes of elastic properties are orthogonal to the coor-

dinate lines, the relations of the generalized Hooke law can be written as
rs ¼ c11es þ c12et þ c13ec;

rt ¼ c21es þ c22et þ c23ec;

rc ¼ c31es þ c32et þ c33ec;

stc ¼ c44etc; scs ¼ c55ecs; sst ¼ c66est:

ð7Þ
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Here
c11 ¼
1

X
ðg22g33 � g223Þ; c12 ¼ c21 ¼

1

X
ðg31g23 � g21g33Þ;

c13 ¼ c31 ¼
1

X
ðg21g32 � g31g22Þ; c22 ¼

1

X
ðg11g33 � g243Þ;

c23 ¼ c32 ¼
1

X
ðg12g31 � g11g32Þ; c33 ¼

1

X
ðg11g22 � g212Þ;

c44 ¼
1

g44
; c55 ¼

1

g55
; c66 ¼

1

g66
;

X ¼ ðg22g33 � g223Þg11 þ ðg31g23 � g21g33Þg12 þ ðg21g32 � g31g22Þg13;

ð8Þ
where the coefficients glk are related to mechanical characteristics as follows (Lekhnitsky, 1977):
g11 ¼
1

Es
; g22 ¼

1

Et
; g33 ¼

1

Ec
;

g12 ¼ � mst
Et

; g23 ¼ � mtc
Ec

; g13 ¼ � mcs
Es

;

g44 ¼
1

Gtc
; g55 ¼

1

Gcs
; g66 ¼

1

Gst
:

ð9Þ
In (7)–(9), Es, Et, Ec are the moduli of elasticity along the directions s, t, c, respectively; Gst, Gtc, Gcs are the

shear moduli for the planes parallel to the coordinate surfaces a¼ const., s¼ const., c¼ const.; mst, mtc, msc are
Poisson�s ratios characterizing the transverse contraction under tension in the directions of the coordinate

axes.

Let us impose some restrictions on the elastic constants introduced in the relations of the generalized
Hooke law. The sum of the works produced by all the stress components should be positive. Such condition

restricts the value of elastic constants and reflects the fact that the potential energy is a positive definite

quadratic form (Grigorenko et al., 1977).

Thus, relations (4)–(7) are the basic equations of the elasticity theory for noncircular hollow cylinders. It

should be noted that in solving the problems of the elasticity theory for noncircular hollow cylinders, it is

necessary to satisfy not only the main equations presented above, but also the boundary conditions.

Such conditions for inner and outer surfaces of the cylinder are written as follows:

for static problems
r0
c ¼ q�c ; r0

sc ¼ q�s ; s0tc ¼ q�t at c ¼ �H=2;

rN
c ¼ qþc ; sNsc ¼ qþs ; sNtc ¼ qþt at c ¼ þH=2;

ð10Þ
for dynamical problems
r0
c ¼ 0; r0

sc ¼ 0; s0tc ¼ 0 at c ¼ �H=2;

rN
c ¼ 0; sNsc ¼ 0; sNtc ¼ 0 at c ¼ þH=2:

ð11Þ
The conditions (10) and (11) may be substituted by the conditions given in terms of displacements or in

mixed form.

In addition to the conditions on the bounding surfaces c ¼ �H=2 and c ¼ H=2, we should satisfy the

conditions on the cylinder ends, s ¼ 0 and s ¼ ‘, and in the cross-sections t ¼ t0 and t ¼ tp. Here, ‘ is the
cylinder length, t0 ¼ const. and tp ¼ const. are the cross-sections limiting the cylinder along the directrix.
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Boundary conditions can be formulated in terms of stresses, displacements, or in mixed form through the

functions rs, sst, ssc, us, ut, and uc on the cylinder ends and rt, sst, stc, us, ut, and uc in the cross-sections

limiting the cylinder along the directrix.

The solution of the problem for closed cylinders is reduced to that for nonclosed ones satisfying the
conditions of periodicity
Rðs; t0; cÞ ¼ Rðs; tp; cÞ; ð12Þ
where
Rðs; t; cÞ ¼ frt; sst; stc; us; ut; ucg:
3. Solution of partial differential equations for an anisotropic noncircular cylinder

In constructing the solving system of differential equations that describe the stress–strain state of a

noncircular hollow cylinder and the associated steady dynamic processes, we use the above presented

equations of the spatial elasticity theory which include three differential equations of equilibrium (5), three

equations of motion (6), six Cauchy relations (4), and six relations of the generalized Hooke law (7).

To solve the problem we adopt that the directrix of the middle surface is an arbitrary continuous

piecewise smooth curve, the mechanical characteristics vary along the directrix and over the thickness,

being constant along the generatrix, and the law of distribution of the surface and volume loads acting on

the cylinder can be given in various ways. In the case of dynamic problems, it is supposed that the lateral
surfaces of the cylinder are free from stresses.

As solving functions, we have chosen three components of stresses rt, sst, sct and three components of

displacements us, ut, uc. Such a choice of solving functions is caused by the fact that the boundary con-

ditions at the cross-sections limiting the cylinder along the directrix are formulated just in terms of these

components.

Thus, the required system of differential equations should be solved for partial derivatives of the

components of the chosen functions with respect to the coordinate t, and the right-hand sides can include,

besides the factors of an external load, only the solving functions and their derivatives with respect to the
coordinates s and c.

In the relations of the generalized Hooke law that express stresses rt, sst, sct in terms of strains, we

exclude the appropriate components of deformation with the help of the Cauchy relations and solve the first

equation for out
ot , the second one for ous

ot , and the third one for
ouc
ot . Thus, we immediately obtain relations

expressing the derivatives ous
ot ,

out
ot ,

ouc
ot in terms of the solving functions and their derivatives with respect to the

coordinates s and c:
ous
ot

¼ H2

c66
sst � H2

out
os

;

out
ot

¼ H2

c22
rt �

H2

c22
c21

ous
os

� oH2

oc
uc �

H2

c22
c23

ouc
oc

;

ouc
ot

¼ H2

c44
stc þ

oH2

oc
ut � H2

out
oc

:

ð13Þ
In three remaining equations of the generalized Hooke law, we have also excluded deformations with the

help of the Cauchy relations. The formulas obtained for rs and rc include the derivatives out
ot that can be

excluded by using the second equation in (13). After transformations, the formulas for rs, rc, ssc can be
represented in the following form:
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rs ¼ M11rt þM12

ous
os

þM13

ouc
oc

;

rc ¼ M21rt þM22

ous
os

þM23

ouc
oc

;

ssc ¼ M31:

ð14Þ
Here, Mij are the coefficients that can be expressed in terms of the physical and mechanical characteristics of

the cylinder as
M11 ¼
c12
c22

; M12 ¼ c11 �
c212
c22

;

M13 ¼ c13 �
c12
c22

c23;

M21 ¼
c32
c22

; M22 ¼ c31 �
c32
c22

c21;

M23 ¼ c33 �
c223
c22

;

M31 ¼ c55; M32 ¼ c55:

ð15Þ
By differentiating the formulas for rc and ssc with respect to the coordinate c and regarding for the

inhomogeneity of the material over the thickness, we get the formulas for the derivatives
orc
oc and

ossc
oc in the

following form:
orc

oc
¼ oM21

oc
rt þM21

ort

oc
þ oM22

oc
ous
os

þM22

o2us
osoc

þ oM23

oc
ouc
oc

þM23

o2uc
oc2

;

ossc
oc

¼ oM31

oc
ouc
os

þM31

o2uc
osoc

þ oM32

oc
ous
oc

þM32

o2us
oc2

:

ð16Þ
In what follows, relations (14) and (16) are used in derivating the system of solving equations and are

applied for the calculation of all the components of a stress state.
First of all, we solve the second equation of equilibrium in (5) for ort

ot . The first equation of equilibrium is

solved for osst
ot and

ors
os , with ssc and

ossc
oc being excluded with the help of the relations obtained above. Then we

solve the third equilibrium equation for
ostc
ot and exclude both

ossc
os and

orc
oc .

The relations obtained compose the system of six differential equations that are solved relative to the

partial derivatives of the functions rt, sst, stc, us, ut, and uc with respect to the coordinate t and contain these

functions or their derivatives with respect to the coordinates s and c on the right-hand sides. They are

written as follows:
ort

ot
¼ L11

osst
os

þ L12stc þ L13

ostc
oc

þ L14Pt;

osst
ot

¼ L21

ort

os
þ L22

o2us
os2

þ L23

ouc
os

þ L24

ous
oc

þ L25

o2uc
osoc

þ L26

o2us
oc2

þ L28Ps;

ostc
ot

¼ L31rt þ L32

ous
os

þ L33

o2uc
os2

þ L34

ort

oc
þ L35

o2us
osoc

þ L36

ouc
oc

þ L37

o2uc
oc2

þ L38Pc;

ous
ot

¼ L41sst þ L42

out
os

;

out
ot

¼ L51rt þ L52

ous
os

þ L53uc þ L54

ouc
oc

;

ouc
ot

¼ L61stc þ L62ut þ L63

out
oc

:

ð17Þ
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Here
L11 ¼ �H2; L12 ¼ �2
oH2

oc
; L13 ¼ �H2; L14 ¼ �H2;

L21 ¼ �H2M11; L22 ¼ �H2M21; L23 ¼ � o

oc
ðH2M31Þ;

L28 ¼ �H2;

L31 ¼
oH2

oc
� o

oc
ðH2M21Þ; L32 ¼

o

oc
ðH2M22Þ; L33 ¼ �H2M31;

L34 ¼ �H2M21; L35 ¼ �H2ðM22 þM31Þ; L36 ¼ � o

oc
ðH2M23Þ;

L37 ¼ �H2M23; L38 ¼ �H2:

ð18Þ
For dynamical problems, the system takes the form:
ort

ot
¼ L11

osst
os

þ L12stc þ L13

ostc
oc

þ H2q
o2ut
ot2�

;

osst
ot

¼ L21

ort

os
þ L22

o2us
os2

þ L23

ouc
os

þ L24

ous
oc

þ L25

o2uc
osoc

þ L26

o2us
oc2

þ H2q
o2us
ot2�

;

ostc
ot

¼ L31rt þ L32

ous
os

þ L33

o2uc
os2

þ L34

ort

oc
þ L35

o2us
osoc

þ L36

ouc
oc

þ L37

o2uc
oc2

þ H2q
o2uc
ot2�

;

ous
ot

¼ L41sst þ L42

out
os

;

out
ot

¼ L51rt þ L52

ous
os

þ L53uc þ L54

ouc
oc

;

ouc
ot

¼ L61stc þ L62ut þ L63

out
oc

:

ð19Þ
Here
L41 ¼
H2

c66
; L42 ¼ �H2;

L51 ¼
H2

c22
; L52 ¼ �H2c21

c22
; L53 ¼ � oH2

oc
;

L54 ¼ �H2

c22
c23; L55 ¼

H2

c22
g2;

L61 ¼
H2

c44
; L63 ¼ �H2:

ð20Þ
Next let us state a boundary-value problem for noncircular hollow cylinder, whose stress–strain state is

described by the system of partial differential equations (17).

Consider noncircular hollow cylinder that is closed over the directrix.

In the general case when the symmetry of a stress–strain state is absent, the solution for closed cylinders

at the expense of the satisfaction of the conditions of periodicity is reduced to that for nonclosed ones.

To reduce the dimensionality of the system (17), the given and sought-for functions are represented as
Fourier series in the coordinate s:
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X ðs; t; cÞ ¼
X1
m¼0

Xmðt; cÞ sin kms;

Y ðs; t; cÞ ¼
X1
m¼0

Ymðt; cÞ cos kms;
ð21Þ
where
X ðs; t; cÞ ¼ frs; rt; rc; stc; ut; uc; es; et; ec; etc; pt; pc; qt; qcg;

Y ðs; t; cÞ ¼ fsst; scs; us; est; ecs; ps; qsg;

Xmðt; cÞ ¼ frsm;rtm; rcm; stcm; utm; ucm; esm; etm; ecm; etcm; ptm; pcm; qtm; qcmg;

Ymðt; cÞ ¼ fsstm; scsm; usm; estm; ecsm; psm; qsmg;

where km ¼ mp=L.

While studying the wave processes occurring in anisotropic noncircular hollow cylinders, in order to

decrease the dimensionality of the system of partial differential equations (19), we will present the solution

as a traveling wave along the axis s in the form
V ¼ frt; sts; stc; us; ut; ucg ¼ f~rtðt; cÞ; i~stsðt; cÞ;~stcðt; cÞ;~iusðt; cÞ; ~utðt; cÞ; ~ucðt; cÞgexpiðkss� xt�xÞ; ð22Þ

where ks is the wave number in the axial direction, x is the cyclic frequency, and t� is the temporal
coordinate. Below, we will omit the sign ‘‘tilde’’.

Applying expansions (21) and (22) to the three-dimensional problems (17) and (19), we obtain a number

of two-dimensional problems for every harmonic of the expansion. The two-dimensional boundary-value

problem is reduced to one-dimensional ones by employing the method of straight lines over the thickness of

the cylinder. All the coefficients of the system of equations (17) and (19), as well as the solving functions, are

assumed to be sufficiently smooth in the coordinate c. Now, the derivatives in this coordinate are replaced

by finite-difference relations, and the real boundary conditions at cross-sections h¼ const. are substituted

by their discrete values at equidistant surfaces.
In this paper, a more accurate variant of approximation is used that makes it possible to reduce the error

to OðhnÞ, where n is the number of points of approximation across the thickness of the cylinder. We call it as

a general approximation. The efficiency of various variants of approximation is demonstrated below by

several examples.

Thus, having applied the method of straight lines to a two-dimensional problem formulated for every

mth harmonic of the expansion we arrive to the following system of k ordinary differential equations

(k ¼ 6n� 4, where n is the number of points of finite-difference approximation across the thickness of the

cylinder):
dV
dt

¼ AðtÞV ðtÞ þ BðtÞ; ð23Þ

A1V ðt0Þ ¼ B1;

A2V ðtN Þ ¼ B2;
ð24Þ
where
V ¼
r1
t ; s

1
st; u

1
s ; u

1
t ; r

2
t ; s

2
st; s

2
tc; u

2
s ; u

2
t ; u

2
c ; . . . ;

rn�1
t ; sn�1

st ; sn�1
tc ; un�1

s ; un�1
t ; un�1

c ; rn
t ; s

n
st; u

n
s ; u

n
t

8<
:

9=
;
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is the solving vector function; AðtÞ is the N � � N � order matrix of coefficients of the system; A1 and A2 are

the N�

2
� N �� �

order rectangular matrices and BðtÞ, B1, B2 are the given vectors with the dimensionless values

N �, N�

2
, N�

2
.

By studying the stationary dynamic processes in anisotropic hollow noncircular cylinders, we arrive to

the generalized problem on eigenvalues for systems of linear ordinary differential equations with relevant

boundary conditions:
oV
ot

¼ Dðt; ks;xÞ; ð25Þ

D1V ðt0Þ ¼ 0; ð26Þ

D2V ðtnÞ ¼ 0: ð27Þ

Here, Dðt; ks;xÞ is the matrix of coefficients of the N � � N � order system and D1, D2 are the rectangular

matrixes of the N�

2
� N � order.

To solve the linear boundary-value problem described above we will use the stable numerical method of

discrete orthogonalization (Grigorenko et al., 1986), whereas for solution of the generalized problem on

eigenvalues we will employ the method of discrete orthogonalization in combination with the method of

stepwise search.
4. Analysis of a stress–strain state of cylinders with ellipsoidal cross-section

Let us demonstrate the advantages of the suggested approach by solving the stress–strain problem for a

thick-walled cylinder with an arbitrary cross-section. Having verified the realizability of the approach by

solving the problem on deformation of a circular thick-walled cylinder that has the exact solution, we can

solve the stress–strain problems for the thick-walled cylinder with a more complex geometry of cross-

section.

As an example, we will consider the problem on the stress–stain state of a noncircular hollow cylinder,

whose cross-section contour has the form of an ellipse (Fig. 2). The corresponding equations in the
parametric form can be written as follows:
x ¼ b cos h; z ¼ a sin h;
where a and b are the ellipse semi-axes, and h is a some parameter.
Fig. 2. Cross-section of the cylinder under consideration.
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Assume that the perimeter of the cylinder cross-section contour remains unchangeable and equal to the

length of the circumference with the radius R. In this case, we have the equality
pðaþ bÞ 1

�
þ D2

4
þ D4

64
þ D6

256
þ � � �

�
¼ 2pR:
Supposing that D ¼ b�a
bþa and keeping the terms up to D6, we obtain:
a ¼ R
f
ð1� DÞ; b ¼ R

f
ð1þ DÞ;

f ¼ 1þ D2

4
þ D4

64
þ D6

256
;

a
b
¼ 1� D

1þ D
:

By varying D, we can change the ratio of the ellipse semi-axes. So, in particular, at D ¼ 0, we have a circular

cylinder.

Having chosen the parameter h as the variable of integration, we will introduce the new factor b, which is

related to h as follows:
b ¼ bðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 sin2 hþ a2 cos2 h

p
:

Then the directrix curvature of an ellipsoidal cylinder is defined as
Kt ¼
abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb2 sin2 hþ a2 cos2 hÞ3
q :
At first, we will study the stress–strain state of an isotropic hollow cylinder for various values of geo-

metric characteristics. Let the cylinder is under the action of the internal pressure qc ¼ q0 sin ps
‘
ðq0 ¼ const:Þ.

By virtue of the symmetry of the stress–strain state relative to the planes h ¼ 0 and p=2, it is sufficient to

consider the quarter of the cylinder bounded by these planes, having specified the boundary conditions in

the sections h ¼ 0 and h ¼ p=2 as follows:
sist ¼ 0;

sitc ¼ 0;

uit ¼ 0:
In calculations we adopt: E ¼ E0; m ¼ 0:3; R ¼ 50; ‘ ¼ 50, 100, 200; H ¼ 5, 10, 15, 20; and D ¼ 0, 0.1,

0.2, 0.3.

Let us estimate the influence of variation in the parameter D, which characterizes the degree of deviation

of the shape of the cross-section from the circular one, on the stress–strain state of the thick-walled cylinder

with an ellipsoidal cross-section. The calculations were performed for the following values of the geometric

parameters: R ¼ 50; ‘ ¼ 50; H ¼ 10; and D ¼ 0, 0.1, 0.2, 0.3.
The graphs of distributions of the longitudinal rs and circumferential rt stresses in the domain

06 h6 p
2

� �
on the inner (c ¼ � H

2
; solid line) and outer (c ¼ H

2
; dashed line) surfaces of the cylinder and

deflections uc of the middle surface for various values of D along the directrix are presented in Figs. 3–5. As

it is seen from Figs. 3 and 4, the longitudinal rs and circumferential rt stresses in the circular cylinder are

constant along the total length of the directrix. But they change significantly with increase in D in the case of

the noncircular cylinder. From the graphs presented it follows that the character of the stress state on the

inner surface of the cylinder in the zone of minimum rigidity ðh ¼ p=2Þ is defined, beginning from D ¼ 0:1,
by the longitudinal stresses rs that exceed significantly the circumferential stresses rt. In contrast, in the
zone of maximum rigidity ðh ¼ 0Þ, the circumferential stresses rt dominate. For the outer surface the values
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of longitudinal and circumferential stresses in the mentioned zones are close. The longitudinal stresses rs

both on the inner and outer surfaces reach their maximum in the zone of minimum rigidity of the cylinder

for all of the values D. In some section h ¼ const: for all the values of the parameter D, the longitudinal rs
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and circumferential stresses rt are close to magnitudes of appropriate stresses in a circular cylinder ðD ¼ 0Þ.
Such a phenomenon for the longitudinal stresses can be seen in the section h ¼ p=6 both on the inner and

outer surfaces. As for circumferential stresses, it should be noted that their values for circular and non-

circular cylinders coincide also in the cross-section h ¼ p=6.
The distribution of deflections uc along the directrix of the middle surface is shown in Fig. 5. Note that

the nonlinearity of the distribution increases with D.
The analysis of deflections of the middle surface indicates to their increase in the zone of minimum

rigidity with change in D and their reduction in the zone of maximum rigidity. Such relations are typical for

cylinders with an ellipsoidal cross-section. In the section h ¼ p=6, the magnitudes of deflections of the

middle surface for all the values of D are close to those which are held in a circular cylinder.

One of the advantages of the suggested method is its three-dimensionality, i.e., the ability to present the

distribution of the parameters of a stress–strain state along three directions. Of peculiar interest is the

distribution of the stress state factors over the cylinder thickness.

The graphs of the distribution of the circumferential stresses rt over the cylinder thickness in the zones of
maximum (dashed line) and minimum (solid line) rigidities for all of the values of D are presented in Fig. 6.

The distinctive feature of the distribution of rt over the thickness is the increase in nonlinearity in the

zone of maximum rigidity with increase in the parameter D. The behaviour of the distribution rt in the zone

of minimum rigidity is close to a linear one. The high values of rt are achieved at the loaded surface in the

zone of maximum rigidity and at the unloaded one in the zone of minimum rigidity. The values of rt at a

surface close to the middle one in noncircular cylinders are close to those in a circular one.

The values of deflections uc distributed over the cylinder thickness in the zones of minimum and maxi-

mum rigidities for all the parameters D are presented in Table 1. The analysis of numerical values testifies
that the increase in the values of deflections with a growth of D in the zone of minimum rigidity and their

reduction down to a change of the sign ðD ¼ 0:3Þ in the zone of maximum rigidity is characteristic for
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Table 1

Distribution of deflection over the cylinder thickness

h c=H uc=E�1
0 q0

D ¼ 0 D ¼ 0:1 D ¼ 0:2 D ¼ 0:3

0 )1/2 182.43 110.76 52.145 7.8457

)1/3 181.04 108.39 48.872 3.7254

)1/6 179.18 106.17 46.471 1.4345

0 176.92 104.04 44.652 0.21605

1/6 174.29 101.94 43.250 )0.29282
1/3 171.26 99.845 42.180 )0.25600
1/2 167.78 97.705 41.392 0.26557

p=2 )1/2 182.43 263.89 349.98 434.42

)1/3 181.04 263.54 350.73 436.28

)1/6 179.18 262.19 349.99 436.22

0 176.92 259.97 347.94 434.45

1/6 174.29 256.93 344.65 431.04

1/3 171.26 253.08 340.12 425.99

1/2 167.78 248.34 334.24 419.17
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cylinders with an ellipsoidal cross-section. For a slight deviation of the shape of a cross-section from the
circular one, i.e., for D6 0:2, the character of the distribution of the values of deflections over the thickness

is close to the linear one both in the zones of minimum and maximum rigidities of the cylinder. But for

D > 0:2, i.e., in the case of a considerable deviation of the shape of the cross-section from the circular one,

the distribution of deflections in the zones of minimum and maximum rigidities is nonlinear.
5. Solution of the problem on propagation of elastic waves in a cylinder with ellipsoidal cross-section

Let us consider the problem on propagation of elastic waves in a hollow noncircular orthotropic
cylindrical waveguide with an ellipsoidal cross-section. The geometry of noncircular hollow cylinders with
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such a cross-section was described in the previous section. Due to the symmetry of a stress–strain state

relative to the planes t ¼ 0 and t ¼ p=2, it is sufficient to consider the half of a noncircular cylinder, that is

bounded by these planes, by setting the boundary conditions at the cross-sections t ¼ 0 and t ¼ p=2 as

follows:
Table

Compa

No.

1

2

3

4

5

6

ri
st ¼ 0 ði ¼ 1; 2; . . . ; nÞ;

ri
tc ¼ 0 ði ¼ 1; 2; . . . ; nÞ;

uit ¼ 0 ði ¼ 2; 3; . . . ; n� 1Þ:
As an example of application of the proposed approach, we will consider the problem on propagation of

elastic waves in the waveguide with thickness H ¼ 4. The perimeter of the middle surface contour of its

cross-section is equal to the length of the circumference with the radius R ¼ 2. The elastic characteristics of

the orthotropic material have the following values:
20E1 ¼ E3; E2 ¼ E3; 20G12 ¼ 20G13 ¼ E3; 2:68G23 ¼ E3; m12 ¼ m23 ¼ 0:34; m13 ¼ 0:017:
To estimate the accuracy of the proposed approach, the results of calculation of the dynamical char-

acteristics for a noncircular orthotropic cylinder are compared with the data that were derived within the

method developed for circular cylinders. The values of the first six dimensionless frequencies

x� ¼ xH
ffiffiffiffiffiffiffiffiffiffiffiffi
q=G12

p
at a fixed wave number that were derived within various methods are given in Table 2. To

solve the dynamic problems, we carried out the calculations by the proposed approach in the case of a

noncircular cylinder for following numbers of points of the difference approximation over the coordinate

related to thickness: n ¼ 7, n ¼ 9, and n ¼ 11. The practical coincidence of the values of frequencies, which

were found within the two different approaches (the difference ranges from 0.08% to 2.12% and decreases
with increase in the number of straight lines), makes it possible to estimate the accuracy of the results

derived in this section.

For the isoperimetric noncircular cylinder under study, we determined the dispersion curves for various

values of the parameter of ellipticity D. The values of the first cut-off frequencies upon growing D
ðD ¼ 0:1–0:6Þ are given in Table 3. In this case, having compared the cut-off frequencies with those for a

circular cylinder ðR ¼ 2;H ¼ 4Þ, we observe a slight decrease of these frequencies with increase in ellipticity

(for various cut-off frequencies, the difference is within the range 1.5–36%). The behaviour of the dispersion

curves ðx� ¼ xH
ffiffiffiffiffiffiffiffiffiffiffiffi
q=G12

p
Þ for circular and noncircular orthotropic cylinders at the first and fourth fre-

quencies is compared in Fig. 7. Here the solid lines denote the dispersion curves for a circular cylinder,

dashed (D ¼ 0:5) and dash-dotted ðD ¼ 0:2Þ lines correspond to those for noncircular cylinders. Due to this

date one can conclude that the difference in the behaviour of dispersion curves becomes more pronounced

with increase in the wave number (at j� ¼ 0:4, it equals 10% at D ¼ 0:2% and 17.2% at D ¼ 0:5 for the first

mode as well as 2.8% at D ¼ 0:2% and 7.2% at D ¼ 0:5 for the fourth mode). It should be noted also that

the values of frequencies decrease with increase in the ellipticity parameter D. For elliptic cross-sections, the
first modes also propagate practically without dispersion.
2

rison of the first six frequencies, obtained using different approaches, for specific wave numbers

According to the circular cylinder method n ¼ 7 n ¼ 9 n ¼ 11

0.5581 0.5649 0.5608 0.5597

0.5600 0.5651 0.5613 0.5603

0.5731 0.5771 0.5741 0.5734

0.5794 0.5842 0.5817 0.5814

0.5806 0.5874 0.5826 0.5821

0.6219 0.6296 0.6243 0.6218



Table 3

Values of the cut-off frequencies for different ellipticity parameters

No. D

0 0.1 0.2 0.3

2 0.0892 0.0878 0.0859 0.0826

3 0.1938 0.1927 0.1908 0.1819

4 0.2492 0.2478 0.2456 0.2448

5 0.2741 0.2732 0.2724 0.2714

0 0.4 0.5 0.6

2 0.0892 0.0778 0.0719 0.0662

3 0.1938 0.1771 0.1683 0.1622

4 0.2492 0.2436 0.2427 0.2419

5 0.2741 0.2702 0.2685 0.2619

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4

*ω

πk

Fig. 7. Dispersion curves for noncircular orthotropic cylinders at various values of the parameter ellipticity parameter: solid lines

correspond to the circular cylinder, dashed and dot-dashed lines correspond to the noncircular cylinder for D ¼ 0:5 and D ¼ 0:1,

respectively.
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6. Conclusion

In this paper, we have proposed the numerical–analytical approach for analyzing the stress–strain state

and character of propagation of harmonic elastic waves in an thick-walled anisotropic hollow cylinder with

a noncircular cross-section. The approach consists of three stages. At the first stage the three-dimensional

problem is reduced to the two-dimensional one with the solution being presented as the Fourier series

expansion in the longitudinal coordinate. At the second stage the solution is approximated by finite dif-
ferences over the cylinder thickness that is assumed essential in comparison with other dimensions. At the

third stage the one-dimensional boundary-value problems and eigenvalue problem are solved by the
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numerical method of discrete orthogonalization. In the case of a dynamic problem this method is combined

with the method of a step-by-step search.

It should be noted that the approach used at the first and third stages is realized with sufficient accuracy,

whereas at the second stage its error may be estimated. Since the body under consideration has not
inclusions or cut-outs, the approach needs to be recognized as more efficient when compared with the finite

element method.

As an example, the cylinder with an elliptical cross-section was considered. The results of the investi-

gation into the stress–strain state and dispersion curves are presented depending on the cross-section

ellipticity parameters.
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